RIANNA JITOSHO

rjitosho.github.io | rjitosho@stanford.edu

EDUCATION

Stanford University | Stanford, CA

- o Ph.D. Candidate in Mechanical Engineering, M.S. in Mechanical Engineering (2019-2021), GPA: 4.0/4.0
- Advisors: Allison Okamura and Karen Liu, Collaborator: Zachary Manchester (Carnegie Mellon University)
- o Relevant Coursework: Machine Learning, Robot Autonomy, Optimal and Learning-Based Control

Massachusetts Institute of Technology | Cambridge, MA

- Bachelor of Science in Mechanical Engineering, GPA: 4.9/5.0
- 0 Relevant Coursework: Dynamics and Control I & II, Feedback Systems, Design of Electromechanical Robotic Systems

EXPERIENCE

CHARM Lab at Stanford University | Stanford, CA

Graduate Student Researcher

Modeling, System Identification, and Control for Soft Robots

- o Created a high-speed dynamics simulator for soft growing "vine" robots to be used in motion planning algorithms
- Prototyped a lightweight version of the vine robot for use on mobile platforms such as aerial vehicles
- o Developed a system identification method for approximating soft robot dynamics with multi-link rigid body models
- o Exploring trajectory optimization and reinforcement learning for a mobile-base vine robot to leverage parallel actuation (base motion and vine bending) for improving dynamic performance; validating control methods on physical hardware Sep - Dec 2019

Medical Robotics

- o Developed a practice environment in VR for surgeons to improve their suturing technique
- o Utilized C++, ROS, and QT for implementation on Intuitive Surgical's Da Vinci robotic-assisted surgical system

Honda Research Institute | San Jose, CA

Robotics Intern

- Developed planning and control methods for in-hand manipulation that exploits sliding contact 0
- 0 Implemented algorithms in C++ and ran simulations with ROS to verify functionality

NASA Jet Propulsion Laboratory | Pasadena, CA

Robotics R&TD (Research & Technology Development) Intern

- o Designed hardware for an autonomous hybrid aerial-ground vehicle to compete in the DARPA Subterranean Challenge
- Led sensor integration, electronics packaging, and wire harnessing of the aerial-ground vehicle 0
- Experimentally characterized propeller thrust variation to verify first order dynamics and inform vehicle controls 0

DART Lab at Georgia Institute of Technology | Atlanta, GA

NSF Robotics Research Fellow

- o Designed and manufactured a bistable, reflexive, lightweight gripper featuring a high force density and rapid activation
- Led project from concept phase to working prototype which carried 15-28 times its weight and actuated in 0.12 s 0

Responsive Environments at MIT Media Lab | Cambridge, MA

Undergraduate Researcher

- Demonstrated locomotion on a proof-of-concept prototype of a pneumatic, bio-inspired epidermal soft robot
- Designed a silicone actuator for bending in 3 directions, developed fabrication methods utilizing multi-part molds
- Implemented electronic controls for the pneumatics and programmed multiple modes of locomotion 0

MENTORING AND OUTREACH

Research Mentor - CHARM Lab | Stanford, CA

- o Mentoring undergraduate students for research projects on soft and flexible robotics
- Mentees: Max Alquist, Ryan Nguyen, Sofia Simón-Trench 0

Jun - Dec 2021

Jun - Aug 2019

Mar 2018 - Jun 2019

Jan 2022 - present

2015-2019

Mar 2020 - present

2019-2024

May - Aug 2018

Educational Outreach – CHARM Lab | Stanford, CA
Engage with students ranging from elementary school to community college

o Provide demonstrations of robotics research and lead discussions on areas for future work

Solar Electric Vehicle Team Outreach – MIT | Cambridge, MA

• Hosted lab tours for students from local elementary and high schools or visiting students in MIT summer programs

TEACHING

Stanford University | Stanford, CA

Course Assistant for Dynamic Systems, Vibrations and ControlSep 2022 - presentoFacilitated discussion during class and office hours, designed homework problems, graded assignments and exams

Experimental Study Group (ESG) | Cambridge, MA

Teaching Assistant for Multivariable Calculus

- o Led recitation sections and exam reviews, hosted office hours, graded assignments and exams
- Completed a semester-long course on strategies for effective teaching

China Educational Technology Initiative (CETI) | Xi'an / Guangzhou / Fuzhou, China

Instructor

- Constructed and presented STEM curriculum that provided a more interactive learning experience
- o Facilitated discussion and activities for cross-cultural exchange

PUBLICATIONS

- [1] **R. Jitosho***, S. Simón-Trench*, A. Okamura, B. Do, "Passive Shape Locking for Multi-Bend Growing Inflated Beam Robots," 2023 International Conference on Soft Robotics (RoboSoft), Accepted.
- [2] R. Jitosho, N. Agharese, A. Okamura and Z. Manchester, "A Dynamics Simulator for Soft Growing Robots," 2021 International Conference on Robotics and Automation (ICRA), Xi'an, China, 2021.
- [3] B. Jackson et al., "ALTRO-C: A Fast Solver for Conic Model-Predictive Control," 2021 International Conference on Robotics and Automation (ICRA), Xi'an, China, 2021.
- [4] A. Dementyev, **R. Jitosho** and J. A. Paradiso, "Mechanical Imaging of Soft Tissues with Miniature Climbing Robots," in IEEE Transactions on Biomedical Engineering (TBME), 2021.
- [5] A. Kalantari et al., "Drivocopter: A concept Hybrid Aerial/Ground vehicle for Long-Endurance Mobility," 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 2020, pp. 1-10.
- [6] S. Backus, J. Izraelevitz, J. Quan, R. Jitosho, E. Slavick and A. Kalantari, "Design and Testing of an Ultra-Light Weight Perching System for Sloped or Vertical Rough Surfaces on Mars," 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 2020, pp. 1-12.
- [7] R. Jitosho, K. Choi, A. Foris and A. Mazumdar, "Exploiting Bistability for High Force Density Reflexive Gripping," 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp. 1241-1247.

PRESENTATIONS

Poster Presentation Stanford Wearable Electronics Initiative Symposium	2023
Invited Workshop Speaker International Conference on Soft Robotics (RoboSoft)	2022
Paper Presentation International Conference on Robotics and Automation (ICRA)	2021
Poster Presentation International Conference on Robotics and Automation (ICRA)	2019

AWARDS

National Science Foundation Graduate Research Fellow	2019-2022
Peter and Sharon Fiekowsky Award for Excellence in Teaching	2019
MIT Community Service Award	2014

Mar 2020 - present

Sep 2015 - Aug 2018

Aug 2016 - Jun 2019

Jun 2016 - Aug 2016